Osculating Random Walks on Cylinders

نویسندگان

  • Saibal Mitra
  • Bernard Nienhuis
چکیده

We consider random paths on a square lattice which take a left or a right turn at every vertex. The possible turns are taken with equal probability, except at a vertex which has been visited before. In such case the vertex is left via the unused edge. When the initial edge is reached the path is considered completed. We also consider families of such paths which together cover every edge of the lattice once and visit every vertex twice. Because these paths may touch but not intersect each other and themselves, we call them osculating walks. The ensemble of such families is also known as the dense O(n = 1) model. We consider in particular such paths in a cylindrical geometry, with the cylindrical axis parallel with one of the lattice directions. We formulate a conjecture for the probability that a face of the lattice is surrounded by m distinct osculating paths. For even system sizes we give a conjecture for the probability that a path winds round the cylinder. For odd system sizes we conjecture the probability that a point is visited by a path spanning the infinite length of the cylinder. Finally we conjecture an expression for the asymptotics of a binomial determinant

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Estimation of Hydrodynamic Force on Rough Circular Cylinders in Random Waves and Currents (RESEARCH NOTE)

Most of the Codes of Practice (API, BSI, DnV, NPD) uses Morison's equation to estimate hydrodynamic loads on fixed and moving offshore structures. The significant difference in the prediction of the loads mainly arises from the assumption of the values of hydrodynamic coefficients. In this paper by analysing a full scale set of data in large KC's numbers collected from Delta Wave Flume in the N...

متن کامل

Large Deviations for Random Walks in a Mixing Random Environment and Other (Non-Markov) Random Walks

We extend a recent work by S. R. S. Varadhan [8] on large deviations for random walks in a product random environment to include more general random walks on the lattice. In particular, some reinforced random walks and several classes of random walks in Gibbs fields are included. c © 2004 Wiley Periodicals, Inc.

متن کامل

Random walks on discrete cylinders with large bases and random interlacements

Following the recent work of Sznitman [20], we investigate the microscopic picture induced by a random walk trajectory on a cylinder of the form GN ×Z, where GN is a large finite connected weighted graph, and relate it to the model of random interlacements on infinite transient weighted graphs. Under suitable assumptions, the set of points not visited by the random walk until a time of order |G...

متن کامل

Lattice paths: vicious walkers and friendly walkers

In an earlier paper [4] the problem of vicious random walkers on a d-dimensional directed lattice was considered. \Vicious walkers" describes the situation in which two or more walkers arriving at the same lattice site annihilate one another. Accordingly, the only allowed con gurations are those in which contacts are forbidden. Alternatively expressed as a static rather than dynamic problem, vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003